Structure Reports Online

ISSN 1600-5368

B. Sridhar, ${ }^{\text {a }}$ N. Srinivasan, ${ }^{\text {b }}$
Bjoern Dalhus ${ }^{c}$ and
R. K. Rajaram ${ }^{\mathbf{a} *}$
${ }^{\text {a }}$ Department of Physics, Madurai Kamaraj University, Madurai 625 021, India,
${ }^{\text {b }}$ Department of Physics, Thiagarajar College, Madurai 625009 , India, and ${ }^{\text {c }}$ Department of Chemistry, University of Oslo, Blindern, N-0315 Oslo, Norway
Correspondence e-mail: sshiya@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.042$
ωR factor $=0.136$
Data-to-parameter ratio $=28.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

A triclinic polymorph of l-argininium chloride

The title compound, $\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}^{+} \cdot \mathrm{Cl}^{-}$, crystallizes in the triclinic system with two crystallographically independent argininium residues and two chloride ions in the $P 1$ unit cell. In an earlier study, the structure of l-arginine chloride [Mazumdar et al. (1969). Z. Kristallogr. 130, 328-339] was determined in the monoclinic space group $P 2_{1}$. In our work, the side-chain conformation has an all-trans form in one of the residues, whereas in the other residue, it is in the gauche I -trans-trans-trans form. All the N atoms, carboxylate groups and chloride ions are involved in a hydrogen-bonding network.

Comment

L-Arginine is an important amino acid present in biological substances. Its guanidyl group is also very important in biological processes (Aoki et al., 1971). L-Arginine phosphate monohydrate is well known for its non-linear optical properties (Jiang et al., 1983). The crystal structures of L-arginine dihydrate (Karle \& Karle, 1964), L-arginine hydrochloride monohydrate (Dow et al., 1970), L-arginine phosphate monohydrate (Aoki et al., 1971), L-arginine diarsenate (Zalkin et al., 1989), L-arginine perchlorate (Monaco et al., 1987; Srinivasan \& Rajaram, 1997) and L-argininium dinitrate (Ramaswamy et al., 2001) have been reported. In this paper, we report the structure of a triclinic polymorph of L -argininium chloride, (I). An earlier structure determination of (I) was carried out by visual methods in the monoclinic space group $P 2_{1}$ (Mazumdar et al., 1969). The transformation ($10 \overline{2} / \overline{1} 00 / 010$) of the present data to the monoclinic setting using the $L E P A G E$ routine in PLATON (Spek, 1999) resulted in a high $R_{\text {int }}(0.37)$ value. In addition, no higher symmetry is detected in our data.

(I)

The unit cell contains two crystallographically independent argininium residues (1 and 2) and two chloride ions (Fig. 1). The equality of the $\mathrm{C}-\mathrm{O}$ distances in both residues $[1.263$ (2)/ 1.248 (2) and $1.254(2) / 1.256(2) \AA]$ and also the $\mathrm{O}-\mathrm{C}-\mathrm{C}$ bond angles $\left[116.6(1) / 117.4(1)\right.$ and $\left.118.7(1) / 115.6(1)^{\circ}\right]$ indicates symmetric deprotonated carboxylate groups. Furthermore, the guanidyl group is protonated and forms a guanidinium ion. The $\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ torsion angles indicate the

Received 20 May 2002
Accepted 10 June 2002 Online 14 June 2002

Figure 1
The structure of the title compound, with the atom-numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).
planarity of the guanidyl group. The conformation angle ψ^{1} is -48.5 (2) and $-20.2(2)^{\circ}$ for residues 1 and 2, respectively. The deviations of the N^{α} atom from the carboxyl plane are 1.028 (2) and 0.488 (3) \AA in 1 and 2, respectively. This tendency for the $\mathrm{C}-\mathrm{N}$ bond to twist is found in various amino acids (Lakshminarayanan et al., 1967). The side-chain conformation angle χ^{1} is trans [172.1 (1) ${ }^{\circ}$] for residue 1 and gauche I [62.3 (2) ${ }^{\circ}$] for residue 2, compared to the trans conformation in the monoclinic form (Mazumdar et al., 1969). In the present structure, residue 2 has a less favourable gauche I conformation. The other three conformation angles $\chi^{2}-\chi^{4}$ have a trans-trans-trans form for both residues.

The α-amino $\mathrm{N}(\mathrm{N} 11)$ and the η-guanidyl $\mathrm{N}(\mathrm{N} 13$ and N 14$)$ atoms of residue 1 are involved in $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with carboxylate ions of the translationally related residues 1 . Similarly, the α-amino $\mathrm{N}(\mathrm{N} 21)$ and η-guanidyl N (N 23 and N 24) atoms of residue 2 also form $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the carboxylate ions of the symmetry-related residues 2 (Table 2). In the monoclinic polymorph, the η-guanidyl N atoms are hydrogen bonded with carboxylate ions of the crystallographically independent residues. Interestingly, both structures contain S2 head-to-tail sequences (Vijayan, 1988). The $\mathbf{N}^{\eta 2}$ of residue 1 is engaged in a three-centered hydrogen bond with the carboxylate ion (Jeffrey \& Saenger, 1991). Residues 1 and 2 individually form two-dimensional molecular networks through intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The networks of 1 and 2 are alternately stacked along the b cell direction and are linked together by intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Fig. 2).

Experimental

The title compound was crystallized by slow evaporation from an aqueous solution of a 1:1 stoichiometric ratio of L -arginine and hydrochloric acid.

Figure 2
Packing of the molecules, viewed down the a axis.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=210.67$
Triclinic, $P 1$
$a=5.1263$ (8) A
$b=9.461$ (1) \AA
$c=10.322(2) \AA$
$\alpha=88.138(5)^{\circ}$
$\beta=76.447$ (4) ${ }^{\circ}$
$\gamma=89.745(5)^{\circ}$
$V=486.37(13) \AA^{3}$
$Z=2$
$D_{x}=1.438 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.74, T_{\text {max }}=0.83$
10067 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.136$
$S=1.04$
6750 reflections
235 parameters
H -atom parameters constrained
$D_{m}=1.435 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in carbon tetrachloride and xylene
Mo $K \alpha$ radiation
Cell parameters from 9359
reflections
$\theta=2.4-35.3^{\circ}$
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.8 \times 0.5 \times 0.5 \mathrm{~mm}$

6750 independent reflections
6192 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=35.9^{\circ}$
$h=-8 \rightarrow 8$
$k=-15 \rightarrow 15$
$l=-16 \rightarrow 16$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 2179 Friedel pairs
Flack parameter $=0.12(4)$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

O1A-C11	$1.2631(18)$	O2A-C21	$1.2536(18)$
O1B-C11	$1.2477(18)$	O2B-C21	$1.2555(19)$
C12-N11	$1.4932(19)$	C22-N21	$1.492(2)$
N12-C16	$1.315(2)$	C25-N22	$1.457(2)$
N12-C15	$1.454(2)$	N22-C26	$1.319(2)$
C16-N14	$1.332(2)$	C26-N23	$1.316(2)$
C16-N13	$1.343(2)$	C26-N24	$1.349(2)$
O1B-C11-C12	$117.37(13)$	O2A-C21-C22	$118.67(13)$
O1 $A-\mathrm{C} 11-\mathrm{C} 12$	$116.57(12)$	O2B-C21-C22	$115.55(13)$
O1A-C11-C12-N11	$-48.54(16)$	O2A-C21-C22-N21	$-20.19(18)$
N11-C12-C13-C14	$172.10(14)$	N21-C22-C23-C24	$62.31(18)$
C12-C13-C14-C15	$166.95(15)$	C22-C23-C24-C25	$177.49(14)$
C16-N12-C15-C14	$176.27(18)$	C23-C24-C25-N22	$171.95(15)$
C13-C14-C15-N12	$176.72(16)$	C24-C25-N22-C26	$-178.56(17)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 11-\mathrm{H} 11 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.89	2.35	3.213 (2)	164
$\mathrm{N} 11-\mathrm{H} 11 B \cdots \mathrm{O} 2 A^{\text {ii }}$	0.89	2.05	2.907 (2)	161
$\mathrm{N} 11-\mathrm{H} 11 C \cdots \mathrm{O} 1 B^{\text {iii }}$	0.89	2.05	2.932 (2)	172
$\mathrm{N} 12-\mathrm{H} 12 A \cdots \mathrm{Cl} 2^{\text {iv }}$	0.86	2.35	3.166 (2)	159
$\mathrm{N} 13-\mathrm{H} 13 \mathrm{C} \cdots \mathrm{Cl} 2^{\text {iv }}$	0.86	2.66	3.401 (2)	146
$\mathrm{N} 13-\mathrm{H} 13 \mathrm{D} \cdots \mathrm{O} 1 A^{\text {v }}$	0.86	2.04	2.805 (2)	148
$\mathrm{N} 14-\mathrm{H} 14 \mathrm{C} \ldots \mathrm{Cl} 1^{\text {iii }}$	0.86	2.47	3.240 (2)	150
$\mathrm{N} 14-\mathrm{H} 14 \mathrm{D} \cdots \mathrm{O} 1 B^{\text {vi }}$	0.86	2.18	2.942 (2)	147
$\mathrm{N} 21-\mathrm{H} 21 A \cdots \mathrm{Cl} 2$	0.89	2.28	3.145 (2)	166
$\mathrm{N} 21-\mathrm{H} 21 B \cdots \mathrm{O} A^{\mathrm{v}}$	0.89	2.04	2.876 (2)	156
$\mathrm{N} 21-\mathrm{H} 21 C \cdots \mathrm{O} 2 B^{\text {vii }}$	0.89	2.04	2.835 (2)	148
$\mathrm{N} 22-\mathrm{H} 22 A \cdots \mathrm{Cl} 1^{\text {viii }}$	0.86	2.33	3.171 (2)	164
$\mathrm{N} 23-\mathrm{H} 23 \mathrm{C} \cdots \mathrm{Cl} 2^{\text {i }}$	0.86	2.43	3.193 (2)	149
$\mathrm{N} 23-\mathrm{H} 23 D \cdots \mathrm{O} 2 B^{\text {iv }}$	0.86	2.10	2.953 (2)	170
$\mathrm{N} 24-\mathrm{H} 24 C \cdots \mathrm{O} 2 A^{\text {iv }}$	0.86	2.22	2.963 (2)	144
$\mathrm{N} 24-\mathrm{H} 24 D \cdots \mathrm{Cl} 1^{\text {viii }}$	0.86	2.78	3.499 (2)	142

Symmetry codes: (i) $x, y, 1+z$; (ii) $x, 1+y, 1+z$; (iii) $1+x, y, z$; (iv) $x-1, y, 1+z$; (v) $x, y, z-1$; (vi) $1+x, y, z-1$; (vii) $x-1, y, z$; (viii) $x, y-1, z$.

All H atoms were placed in geometrically calculated positions and included in the refinement in a riding-model approximation, with $U_{\text {iso }}$ values equal to $1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

BS and RKR thank the Department of Science and Technology (DST), India, for financial support.

References

Aoki, K., Nagano, K. \& Iitaka, Y. (1971). Acta Cryst. B27, 11-23.
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dow, J., Jensen, L. H., Mazumdar, S. K., Srinivasan, R. \& Ramachandran, G. N. (1970). Acta Cryst. B26, 1662-1671.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jeffrey, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin, Heidelberg, New York: Springer-Verlag.
Jiang, M., Xu, D. \& Tan, Z. (1983). Abstracts of the VIIth International Conference on Crystal Growth, Stuttgart, Germany, p.2.67.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Karle, I. L. \& Karle, J. (1964). Acta Cryst. 17, 835-841.
Lakshminarayanan, A. V., Sashisekaran, V. \& Ramachandran, G. N. (1967). Conformation of Biopolymers, edited by G. N. Ramachandran. London: Academic Press.
Mazumdar, S. K., Venkatesan, K., Mez, H. C. \& Donohue, J. (1969). Z. Kristallogr. 130, 328-339.
Monaco, S. B., Davis, L. E., Velsko, S. P., Wang, F. T., Eimeral, D. \& Zalkin, A. (1987). J. Cryst. Growth. 85, 252-255.

Ramaswamy, S., Sridhar, B., Ramakrishnan, V. \& Rajaram, R. K. (2001). Acta Cryst. E57, o872-o874.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON for Windows. Utrecht University, The Netherlands.
Srinivasan, N. \& Rajaram, R. K. (1997). Z. Kristallogr. 212, 311-312.
Vijayan, M. (1988). Prog. Biophys. Mol. Biol. 52, 71-99.
Zalkin, A., Eimeral, D. \& Velsko, S. P. (1989). Acta Cryst. C45, 812-813.

